Szczegóły artykułu:

Autor(zy):
dr hab. inż. Mariusz Młynarczuk; dr inż. Katarzyna Godyń; mgr inż. Marta Skiba
Tytuł:

Wykorzystanie sztucznych sieci neuronowych do klasyfikacji struktur odmienionych węgla kamiennego w strefach przyuskokowych

Title:

The application of artificial neural networks for the classification of altered structures of hard coal in near-fault zones

Streszczenie:
Wewnętrzna budowa strukturalna węgla kamiennego ze stref uskokowych, w szczególności obecność spękań o charakterze egzogenicznym, kataklazy oraz mylonitu, może odpowiadać za zwiększoną pojemność gazową węgla i wskazywać na pokłady szczególnie zagrożone zjawiskami gazo-geodynamicznymi. Problematyka węgla odmienionego strukturalnie jest przedmiotem zainteresowania badaczy z różnych krajów. Zaproponowali oni metody klasyfikacji takiego węgla. W ramach opisywanych badań skupiono się na jednej z takich metod w celu zweryfikowania możliwości wykorzystania sztucznych sieci neuronowych jako narzędzia wspomagającego decyzje dotyczące klasyfikacji poszczególnych struktur. Badania prowadzono na zdjęciach wykonanych przy użyciu mikroskopu optycznego. Zdefiniowano wielowymiarową przestrzeń cech, bazującą głównie na parametrach otrzymanych z różnie zdefiniowanych gradientów. W badaniach wykorzystano dwuwarstwową sieć jednokierunkową (MLP). Jej zastosowanie umożliwiło zweryfikowanie w sposób sformalizowany subiektywnych decyzji obserwatora. W rezultacie badań wykazano, że użycie sztucznych sieci neuronowych pozwala na klasyfikację struktur odmienionych węgla na poziomie 91% zgodności z decyzjami obserwatora-geologa
Abstract:
The internal structure of hard coal in near-fault zones - in particular, the presence of exogenic cracks, cataclasis and mylonite - can be the decisive factor when it comes to the increased gas capacity of coal and pose a greater risk of the occurrence of gaso-geodynamic phenomena. The problem of structurally altered coal has been of interest to a lot of researchers from various countries, who have proposed certain methods of classifying such coal. As part of the described research, one of such methods was analyzed, with the aim of verifying the possibilities of using artificial neural networks as a tool facilitating the classification of particular structures. The analysis was performed with the use of photographs taken with the optical microscope. A multidimensional feature space was determined, based mainly on the parameters obtained from differently defined gradients. A two-layer, unidirectional network (MLP) was used in the research, which made it possible to verify - in a formalized way - subjective decisions of the researcher. The tests ultimately demonstrated that the application of artificial neural networks results in successful classification of the altered structures of coal, with the level of compatibility with the decisions made by a researcher-geologist at ca. 91 percent
Słowa kluczowe:
struktura węgla, uskoki, sztuczne sieci neuronowe, perceptron wielowarstwowy (MLP)
Keywords:
coal structure, near-fault zones, artificial neural networks, multi-layer perceptron (MLP)